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The present paper deals with the temperature field past an isothermal sphere. 
Acrivos & Taylor (1962) have obtained results for the case R < 1 with no res- 
triction on the Prandtl number. The results of the present paper axe for the case 
R < 1 in which the Prandtl number is of order unity. An expansion for the 
Nusselt number is given up to and including the term of order R2. 

1. Introduction 
The problem of heat transfer from a sphere in a flow of small Reynolds number 

is not a new one. A recenC contribution to this subject is one reported by Acrivos 
& Taylor (1962) in which the velocity field is described by Stokes theory of 
creeping flow. These authors show, by means of matched asymptotic expansions, 
how the Nusselt number N can be obtained as an expansion in terms of the 
P6cIet number gR, which is the product of the Prandtl number r and the Rey- 
nolds number R. This expansion is valid for the case R < 1 and aR < 1 and there- 
fore is applicable to the flows of all fluids at  extremely small Reynolds numbers. 

Previously, by using a similar procedure, Proudman & Pearson (1957) had 
obtained an expansion for the velocity field for the flow past a sphere at small 
Reynolds numbers, an expansion in which as might be expected, Stokes solution 
is the leading term. The present paper is very similar to the work of Acrivos & 
Taylor but takes into account the extra trerms in the velocity field predicted by 
Proudman & Pearson. It will be found that the Nusselt number now varies 
with R and g separately and that the effect of the extra terms is to modify the 
term in g2R2 in the expansion for the Nusselt number obtained by Acrivos & 
Taylor. This expansion will be valid for the case R c 1 and a of O( 1) and therefore 
will be applicable to the flows of all gases and certain liquids a t  Reynolds number 
less than unity. The form of the energy equation (2.1) used in the solution im- 
posesfurther restrictions on the problem, namely that the fractional temperature 
difference ~Tw-Trn~/Trn must be large compared with the square of the Mach 
number and, by neglecting changes in density, we require also that the fractional 
temperature difference must be small compared with unity. This implies that the 
speed of the flow must be small compared with the speed of sound which is com- 
pa+,ible with the restriction to small Reynolds numbers. 

The method of solution is to obtain the temperature field as an expansion for 
R < 1 in each of two regions, one close to, and the other far from the sphere. 

1 Fluid Mech. 32 



2 P. L. Hirnrner 

The inner (or Stokes) solution satisfies the boundary condition on the sphere, the 
outer (or Oseen) solution satisfies the boundary condition a t  infinity and the 
two solutions are made to match each other in the usual manner. 

The results required from Proudman & Pearson are as follows. In  the inner 
region the expansion for the non-dimensional stream function is 

$(r, 6) = $(2r2 - 3r + r-1) (1 - p2) + R{&(W - 3r + r-1) (1 - p2) 
- &2r2 - 3r + 1 - r-l+ r 2 ) p (  1 -p2)) + O(R2 log R),  (1.1) 

where r is the distance from the centre of the sphere divided by the radius a, 6 
is the angle from the direction of the undisturbed stream, p = cos8, and 
R = Ua/v,  in which U is the velocity of the incident stream and v is the kine- 
matic viscosity. In  the outer region new variables are defined by 

p = uRr, Y = u2R2$, 

and the stream function is given by the expansion 

Y ( p ,  6 )  = &p2(1 -p2)  - u2R{$( 1 +p) [l - exp { - @-1( 1 -p)} ] }  + O(R2). (1.2) 

The factor u does not appear in Proudman & Pearson's analysis, but it has been 
introduced here because p, rather than o-'p is the variable required in the outer 
version of the energy equation. 

2. Basic equations 
The basic equation for the transport of energy is, in dimensionless form, 

V:t = CTRU. grad t ,  (2.1) 

in terms of inner variables, where t is the normalized temperature such that the 
boundary conditions are 

t = l  a t  r = 1 ,  t+O as r - + a  

and where 0: is the operator 

In  the inner region we solve (2.1) with the boundary condition t = 1 at r = 1. 
In the outer region the convective and diffusive terms in (2.1) are of the same 
order of magnitude and so we introduce new variables in t'his region given by 

p = CRY, T(p,pu) = t(r,p), 
and (2.1) becomes 

V i T  = u.gradT. 

In the outer region we solve equation (2.2) for T with the boundary condition 
T -+ 0 as p-f c13 and require that this solution matches with the solution t(r, p) 
valid in the inner region. 

We assume next that the inner and outer expansions may be represented, 

respectively, by rn 

t(r9p) = c f7$(R)L(r,#47 fo (R)  = 1 
n= 0 



and 
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where 

3. Construction of the solution 
(i) First expansion term 

As the first approximation we put R = 0 which gives as the differential equation 
for t o  ( r ,  p) 

The equation for To (p, p) is 
v;t, = 0. 

V ; T ~  = aTolaZ 

where z = pp. Acrivos & Taylor give the required solutions, namely 

(ii) Xecond expansion term 
For small p 

and to satisfy the matching condition we expect, for large r ,  

In view of this we put f,(R) = aR. The velocity in the inner region is 

To(p,p) p - l -H l -p )+ . . . ,  

t(r,pu)-rr-l--gaR(l-p)+. ... 

u = uo (r  , p) + Ru, ( r ,  p) + O(R2 log R) , (3.3) 

where u, and u, are obtained from (1.1). 
Therefore the equation for t ,  ( r ,  p) is 

which becomes 

As in Acrivos & Taylor's paper the required solution is 

t ,  ( r , p )  = - &( 1 - r-l)  + i ( 4  - 6r-l+ 3r-2 - ~ - ~ ) p .  

From the forms of to and t ,  and in order that the matching condition be satisfied 
we expect that, for small p, 

T ( p , p )  N o R ( p - l - ~ + ~ p ) + g a 2 R 2 ( ~ - ~ ~ ) ~ - ' +  .... 
I n  view of this we put PI (R)  = cr2Ra. The velocity in the outer region is 

= Uo(P,p)+RU1(p,pL)+O(R2), 

where U, and U, are obtained from (1 2).  It is at this point that the present work 
diverges from that of Acrivos & Taylor due to the different forms of U, (p, p)  in 
the two cases. 

The equation for T, (p,  p) is 
aT1 V:T, - - az = crU,. grad To. (3.4) 
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If we put T,(p ,p)  = C~PPTT (p,p), equation (3.4) becomes 

('2,-&)T:= - 3  4p -4 e-4p [2a + ap - app 

-exp{ - ipa-l}{(ap+ 2 ~ + p ) e x p { ~ p p a - ~ } -  (a- 1)ppexp{*ppa-'}}]. 
W 

If we use epz = (27r)+ z (n + 8) z-+In+$ ( z )  Pn (p), 
n= 0 

m m 

n=O n=O 
p efiz = ( 2 ~ ) '  c n(n + 4) z-'In++ (2) Pn + (2n)' z (n + 4) ~-'In+g ( 2 )  Pn 

where In+* ( z )  is a modified Bessel function and Pn (p) is the Legendre polynomial 

and, if we put m 

TT (P, 1 ~ )  = Z gn(p)  pn (P)) 
n=O 

the equation satisfied by go (p) is 

+ (47r)h exp { - $pa-'}{ - (ap + 2 a  +p)  ( 2 a ~ - ~ ) + I 4  ($pa-') 
+ (a- l)p(2ap-l)+Ig($pa-l)}]. (3.5) 

The complementary functions of equation (3.5) are go = p-l e**p, and a particular 
integral of this equation can be found by the method of variation of parameters. 

I$ ( z )  = $($n)-k+(ez - e-2) 
Since 

and I+@) = ~(~7r)-+Z-+{(l--z-1)e~+(l +z-l)e-Z}, 

the solution of (3.5) which vanishes at infinity can be written, after straight- 
forward but lengthy manipulation, as 

go (p )  = Ap-1 e-9, - Q ~ T [  - &azp-3( 1 - p)  e - 4 ~  + $ap-3{a - (a - 1) p} ~ - + P - - P ~ - '  

+ a-1p-1 e-bE, (pa-1) - 1 2P -1 (a' - 3) e*pE1 (PI 

+ &-l(a+ 1)2(a- 2)p-1e+~E,{a-l(o+ l)p}], 

E, (x) = Srnt-1 e-t dt 
where 

X 

and A is a constant of integrabion. 
For small x, El@) = -7- logx+x+O(X2). 

Therefore, for small p, 

go(p)  = p-l{A +%fT(l- 2 4  +i(cr+ 1)2(fT-Z)log (a+ 1) 

-$a(fT2-3)loga}+{-~A -*(y+logp)-&(a3- 3a-4)logfT 
+*(a + 1)' (a - 2 )  log (a + 1) - &(6a2 - 3a - 56) )  + O(p).  

Matching this part of the solution with t ( r , p )  we find that 

A = *(2a2- IT+ 4) - $(a+ 1)' (a- 2 )  log (a+ 1) + &(a2- 3)loga. 

Although we have obtained only go@) explicitly we shall find that this gives 
enough information about T, (p ,p )  to obtain the next two terms of the inner 
expansion completely. 
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Up to this point we have, for small p, 

T ( p ,  p) N aR(p-l- 8)  + a2R2[&pp-1 - 4 logp 

+ { -&(6a2- 3 a -  22) + &(a + 1)' (a- 2 )  log (a+ 1) 
-~(a3-3a-2)loga-$y}+O(p)]+termsinvolvingP,(p) for n 2 1. (3.6) 

To satisfy the matching condition we expect, for large r ,  

t(r ,p) - r - 1 + ~ R ( ~ - 1 - ~ ) + ~ 2 R 2 1 0 g a R (  -4) 
+ a2R2( - 4 log r + constant) + O(a3R3) +terms involving P, (p) for .n 2 1. (3.7) 

(iii) Higher-order expansion terms 

From the form of equation (3.7) we expect the next two terms in the inner ex- 
pansion to be of order cr2R210g aR and a2R2 respectively. This is indeed the case 
but, as usual in such cases, these two terms are not independent. We must take 
the sum of these two terms as the next approximation in the inner expansion. 

On putting f 2  (R) = cr2R210g aR, f 3  (R) = a2R2, the equation for t, (r,  p) is 
found to be 

The solution of this equation which vanishes at  r = 1, is of the correct order in the 
outer region, and agrees with equation (3.7) is 

t 2 ( r , p )  = - * ( l - r - l ) .  

V,2t3 = u,, . grad t, + a-lu1. grad to .  

v ; t2  = 0. 

The equation for t3 (r ,  p) is 

This becomes 

V:t3 = &( 1 6 ~ - l -  2 4 ~ - ~  + 7rw4 + 6rP5 - 9r-6 + 4r-7) P,, (p) 
- &( 4 + 3a-1) (2r-2 - 3r-3 + r-5) P, (p) - zg( 1 6r-1 - 6 0 r 2  + 9 0 r 3  - 6 5 r 4  

+ 1 5 r 5  + - 5 v 7 )  P2 (p) + &rl( 2r-2 - 3 v 3  + r-4 - r-5 + r-6) P2 (p). 

The general solution of this equation is 

t3 (r,  p) = &( 8r + 5~~ i- T - ~  - $r-4 + i~~ - 24 log T )  Po (p) 
- &(4 + 3a-l) ( - 1 + $r-l + 4 r 3 )  Pl (p) - A( - 4r + 10 - 15r-1 + y r - 2  
+ 3 - 4  - Ay-5  - 3r-3 log r )  P2 (p) + +!+--1( - 4 + iy-1 - 17-2 + +-4 

4 6 
m 

+ 5r-3 log r )  p2 (p) + x (A,  P + B, r-n-1) P, (pi , 
n=O 

where the A ,  and B, are constants. 

condition t ,  = 0 at r = 1 we have 
Matching this solution with the known part of the outer solution and using the 

A 0 . -  '- --(60-'- 2 4  3 a -  2 2 )  + $(a+ l ) ' ( ~ -  2) log (CT+ 1)  --$(a3- 3 a -  2)loga- $7, 
Ao+Bo = -gg, 

A ,  = - 4, B, = &(28+ 9cr-1), 
B, = =(-- 1 2 3 6  &-1), 

A ,  = 0 for n b 2 ,  B, = 0 for n b 3. Therefore t 3 ( r ,p )  has been determined 
completely. 
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Prom the form of the basic equations and the actual solutions obtained so far 

F, (R)  = a3R310g aR, F3 (R)  = a3R3, f4 (R) = a3R3 log aR, f5 (R)  = a3R3, etc. 

Justification for these expressions can only be given after the corresponding 
solutions have been obtained and the algebraic effort involved in their 
calculation increases rapidly at each successive stage. 

it would appear that successive terms in the expansions are given by 

4. Conclusion 
Acrivos & Taylor used Stokes's formula for the velocity field, which gives a 

good approximation to the flow past a sphere for small Reynolds numbers. 
Because they ignored terms of order R in the velocity, as is appropriate when 
R < 1, their results differ from those of the present work in the term of order 
o2R2 in the temperature field. 

The main result of interest here is an expression for the average Nusselt number 
AV which, in non-dimensional variables, is given by 

From the inner expansion solution we have 

N = N ,  = ~+cR+cT~R~Io~o-R+~(o-)cT~R~+ ..., 
where 
f (o-) = *{(20-'-- a+ 4 ~ -  '24) + 2(a3 - 3 ~ -  2)log a- 2 ( @ +  l)'(o- 2 )  log (a+ l)}. 

This can be compared with the results of Acrivos & Taylor which can be written 
in the form 

N = N ,  = 2 + O-R + (r2R210g O-R + 0*82930-~R~ + 4a3R3 log aR + . . . . 

B 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

f (4 
1.0999 
1.0644 
1.0336 
1.0066 
0.9828 
0.9615 
0.9424 
0.9252 
0.9096 
0.8953 
0.8823 

TABLE 1 

1.05 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
1.40 
1.45 
1.50 

f (4 
0.8703 
0.8592 
0.8490 
0.8395 
0.8306 
0.8223 
0.8146 
0.8074 
0.8006 
0.7941 

Table 1 plots the value off (o-) for 0.5 < a < 1.5 and it can be seen that the 
coefficients of a2R2 in the two Nusselt number expansions agree for a value of a 
of approximately 1.25. 
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Table 2 plots the two expressions N ,  and N ,  in the range 0 < R < 1 for 
u = 0.70 and in this range the two expressions differ by less than five per cent. 

R 

0-05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

CT = 0.70 

Nl 
2-0318 
2.0606 
2.0880 
2.1150 
2.1423 
2.1705 
2.2000 
2-2312 
2.2646 
2.3005 
2.3392 
2.3811 
2.4366 
2.4759 
2.5294 
2.5873 
2.6501 
2.7180 
2.7913 
2.8704 

TABLE 2 

N ,  
2.0321 
2.0618 
2.0910 
2.1207 
2.1517 
2.1845 
2.2196 
2.2572 
2.2979 
2.3418 
2-3892 
2.4403 
2.4954 
2.5547 
2.6183 
2.6864 
2.7591 
2.8367 
2.9192 
3.0068 
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